450 research outputs found

    A quantum Hall Mach-Zehnder interferometer far beyond the equilibrium

    Full text link
    We experimentally realize quantum Hall Mach-Zehnder interferometer which operates far beyond the equilibrium. The operation of the interferometer is based on allowed intra-edge elastic transitions within the same Landau sublevel in the regime of high imbalances between the co-propagating edge states. Since the every edge state is definitely connected with the certain Landau sublevel, the formation of the interference loop can be understood as a splitting and a further reconnection of a single edge state. We observe an Aharonov-Bohm type interference pattern even for low-size interferometers. This novel interference scheme demonstrates high visibility even at millivolt imbalances and survives in a wide temperature range.Comment: As accepted by PR

    Waveform sampling using an adiabatically driven electron ratchet in a two-dimensional electron system

    Full text link
    We utilize a time-periodic ratchet-like potential modulation imposed onto a two-dimensional electron system inside a GaAs/Alx_xGa1−x_{1-x}As heterostructure to evoke a net dc pumping current. The modulation is induced by two sets of interdigitated gates, interlacing off center, which can be independently addressed. When the transducers are driven by two identical but phase-shifted ac signals, a lateral dc pumping current I(ϕ)I(\phi) results, which strongly depends on both, the phase shift ϕ\phi and the waveform V(t)V(t) of the imposed gate voltages. We find that for different periodic signals, the phase dependence I(ϕ)I(\phi) closely resembles V(t)V(t). A simple linear model of adiabatic pumping in two-dimensional electron systems is presented, which reproduces well our experimental findings.Comment: 3 figure

    Electrical read-out of the local nuclear polarization in the quantum Hall effect

    Full text link
    It is demonstrated that the now well-established `flip-flop' mechanism of spin exchange between electrons and nuclei in the quantum Hall effect can be reversed. We use a sample geometry which utilizes separately contacted edge states to establish a local nuclear spin polarization --close to the maximum value achievable-- by driving a current between electron states of different spin orientation. When the externally applied current is switched off, the sample exhibits an output voltage of up to a few tenths of a meV, which decays with a time constant typical for the nuclear spin relaxation. The surprizing fact that a sample with a local nuclear spin polarization can act as a source of energy and that this energy is well above the nuclear Zeeman splitting is explained by a simple model which takes into account the effect of a local Overhauser shift on the edge state reconstruction.Comment: Submitted to Phys. Rev. Let
    • …
    corecore